# HOW TO USE THIS DOCUMENT

- CLICK ON ANY ITEM IN THE TABLE OF CONTENTS TO NAVIGATE TO THAT SECTION OF THE DOCUMENT OR MANUALLY SCROLL THROUGH THE PAGES
- USE THIS 75% + I E AT THE TOP OF THE PAGE TO INCREASE OR DECREASE THE SIZE OF THE PAGES
- CLICK ON THIS IN THE UPPER RIGHTHAND SIDE OF THE PAGE TO DOWNLOAD THE DOCUMENT AS A PDF
- CLICK ON THIS
  IN THE UPPER RIGHTHAND SIDE OF THE PAGE TO PRINT THE
  DOCUMENT

| Forages for Beef Cattle   | Standard | Description                                              | Page |
|---------------------------|----------|----------------------------------------------------------|------|
|                           | Practice |                                                          |      |
| Pasture Planting Overview | CPS 512  | Establishing adapted and compatible species, varieties,  | 1    |
|                           |          | or cultivars of perennial herbaceous plants suitable for |      |
|                           |          | pasture                                                  |      |
| Pasture Planting,         | CPS 512  | Including legumes (alfalfa & clovers) in an established  | 2    |
| Incorporation of Legumes  |          | forage program                                           |      |
| Prescribed Grazing        | CPS 528  | The controlled harvest of vegetation with grazed         | 6    |
| Overview                  |          | animals, managed with the intent to achieve a specific   |      |
|                           |          | objective                                                |      |
| Prescribed Grazing        | CPS 528  | Managing the harvest of vegetation with grazing or       | 7    |
|                           |          | browsing animals; achieved by dividing pasture into      |      |
|                           |          | smaller grazing areas and rotating animals               |      |
| Poultry Litter Overview   | CPS 590  | Managing rate, source, placement, and timing of plant    | 13   |
|                           |          | nutrients and soil amendments while reducing             |      |
|                           |          | environmental impacts                                    |      |
| Nutrient Management by    | CPS 590  | Incorporation of poultry litter into forage systems to   | 14   |
| Incorporation of Poultry  |          | increase plant available nutrients while reducing        |      |
| Litter                    |          | environmental impacts                                    |      |



# **Conservation Practice Overview**

# Pasture and Hay Planting (Code 512)

Pasture and hay planting is establishing adapted and compatible species, varieties, or cultivars of perennial herbaceous plants suitable for pasture or hay production.

# **Practice Information**

This practice applies to all lands suitable for establishment of perennial species for pasture and hay production. This practice does not apply to establishment of annually planted and harvested food, fiber, or oilseed crops.

Pasture and hay planting can help improve or maintain livestock nutrition and/or health, provide or increase forage supply during periods of low forage production, reduce soil erosion, and improve water and air quality.

Considerations for plant species selection can include climatic conditions such as annual precipitation and its distribution, growing season length, temperature extremes, and the USDA Plant Hardiness Zone.

Soil condition and landscape position attributes, such as pH, available water holding capacity, aspect, slope, drainage class, fertility level, salinity, depth, flooding and ponding, and levels of phytotoxic elements may be important considerations. Resistance to disease and insects common to the site or location may also be important.

Planting rates, methods, and dates may be recommended from the NRCS Plant Materials Program, other NRCS technical documents, land grant and research institutions, and extension agencies. Land grant university field trials of various forages can be helpful in selecting forage species for planting, as well.

Refer to the local NRCS Field Office Technical Guide for information on cultural specifications for establishing and managing the species for the intended use.

# **Common Associated Practices**

NRCS Conservation Practice Standard (CPS) Pasture and Hay Planting (Code 512) is commonly applied with other conservation practices, such as NRCS CPSs Forage Harvest Management (Code 511), Herbaceous Weed Treatment (Code 315), Nutrient Management (Code 590), Prescribed Grazing (Code 528), and Upland Wildlife Habitat Management (Code 645).

For further information, contact your local NRCS field office.

Natural Resources Conservation Service



October 2020



**United States Department of Agriculture** 

# Natural Resources Conservation Service

# **CONSERVATION PRACTICE STANDARD**

# PASTURE AND HAY PLANTING

# **CODE 512**

(ac)

# DEFINITION

Establishing adapted and compatible species, varieties, or cultivars of perennial herbaceous plants suitable for pasture or hay production.

# PURPOSE

This practice is used to accomplish one or more of the following purposes:

- Improve or maintain livestock nutrition and health
- Provide or increase forage supply during periods of low forage production
- Reduce soil erosion
- Improve water quality
- Improve air quality
- Improve soil health

# **CONDITIONS WHERE PRACTICE APPLIES**

This practice applies on all lands suitable for the one-time establishment of perennial species for forage production that will likely persist for 5 years. This practice does not apply to the establishment of annually planted and mechanically harvested food, fiber, or oilseed crops planted on designated cropland.

# CRITERIA

## General Criteria Applicable to All Purposes

Select plant species and their cultivars based on-

- Climatic conditions, such as annual precipitation and its distribution, growing season length, temperature extremes, and the USDA Plant Hardiness Zones.
- Soil condition and landscape position attributes such as pH, available water holding capacity, aspect, slope, drainage class, fertility level, salinity, depth, flooding and ponding, and levels of phytotoxic elements that may be present. Utilize ecological site description pasture states and forage suitability groups if available.
- Intended use, level of management, realistic yield estimates, stage of vegetative growth for planned harvest, and compatibility with other species.
- Resistance to disease and insects common to the site or location.

Follow recommendations for planting rates, methods, and dates obtained from the NRCS Plant Materials Program, NRCS State guidance, land grant university extension, and applicable published research documents.

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide online by going to the NRCS website at https://www.nrcs.usda.gov/ and type FOTG in the search field. USDA is an equal opportunity provider, employer, and lender. Calculate seeding rates to be consistent with State and local criteria.

Plant at a depth appropriate for the seed size or plant material, while assuring uniform contact with soil.

Implement site preparation and seedbed preparation methods that avoid restricting plant emergence.

Plant when soil moisture is adequate for germination and establishment.

Utilize seed and planting materials that will meet State quality standards.

Do not plant Federal, State, or local noxious species.

Apply all plant nutrients and soil amendments for establishment purposes according to a current soil test taken within 3 years of the proposed planting date. Nutrient application rates, methods, and dates are obtained from the NRCS Plant Materials Program, NRCS State guidance, land grant university extension, and applicable published research documents.

When planting legumes, use preinoculated seed, inoculum coated seed, or inoculate with the proper viable strain of rhizobia immediately before planting.

Exclude livestock until the plants are well established. Ensure the plants have reached the full start grazing heights or the recommended hay cutting heights (late elongation phase or later) before the first grazing or cutting begins. See NRCS CPSs Prescribed Grazing (Code 528) and Forage Harvest Management (Code 511) for details. There may be conditions and time of the growing season that require letting the plants reach maturity before any haying or grazing takes place to avoid the risk of killing the new plants.

## Additional Criteria for Improving or Maintaining Livestock Nutrition and Health

Use forage species that will meet the desired level of nutrition (quantity and quality) for the kind and class of the livestock to be grazed or fed.

Select species mixtures with similar palatability to avoid selective grazing.

Select species with low or no toxic effects on grazing livestock.

#### Additional Criteria for Improving Water Quality

Use State and locally recommended species from the NRCS Plant Materials Program, NRCS State guidance, land grant university and extension, and other reputable scientific sources to support planting recommendations when using this purpose for filtering runoff.

## Additional Criteria for Improving Air Quality

Select deep rooted perennial plants that are recommended for sequestering carbon and reducing greenhouse gases. Use site preparation and planting techniques that minimize airborne particulate matter generation and transport.

## Additional Criteria for Improving Soil Health

Minimize soil disturbance by using seedbed preparation and planting techniques, such as chemical burndown and no-till drilling of forages, to protect soil aggregates. Nonchemical seedbed preparation methods that are low-disturbance can include soil spading, rototilling (set at reduced speeds with faster forward driving speeds), roller crimping, or timing planting to correspond with natural senescence of the preceding crop.

> NRCS, NHCP October 2020R

Planting a perennial with a specific nurse crop can quickly maximize ground cover during the establishment period.

Maximize biodiversity by selecting plants from at least two of the four functional groups (cool-season grass, cool-season broadleaf, warm-season grass, warm-season broadleaf).

## Additional Criteria for Reducing Soil Erosion

Select plants that provide maximum ground cover for protection of the soil from wind and water erosion.

## CONSIDERATIONS

In areas where animals congregate, consider establishing persistent species that can tolerate close grazing and trampling.

Follow criteria for protecting pasture plants and soil to promote soil health provided in NRCS CPS Prescribed Grazing (Code 528). This includes selecting appropriate plant species that increase deep rooting, soil carbon, and plant resiliency. Use native species if practicable.

Select plants that will help meet livestock forage demand during times that normal forage production is not adequate.

For organic and transitioning-to-organic systems, all materials and methods used in the implementation of this NRCS CPS should comply with the National Organic Program Rules.

For the wildlife species of concern, select and plant species in a designated manner that will meet their cover and critical life cycle needs. Where wildlife and pollinator concerns exist, consider plant selection by using an approved habitat evaluation procedure using native species if at all practicable. For pollinator needs, consider appropriate pollinator seed mixes for planting. When wildlife habitat is the primary concern, use NRCS CPS Wildlife Habitat Planting (Code 420) where planting herbaceous plants.

If planting forage for feedstocks for biofuel, select herbaceous plants that provide adequate kinds and amounts of plant materials needed for the desired fuel and energy production.

Refer to NRCS Conservation Practice Standard (CPS) Nutrient Management (Code 590) for details for managing nutrients.

The criteria in NRCS CPS Forage Harvest Management (Code 511), Herbaceous Weed Treatment (Code 315), or Prescribed Grazing (Code 528) can be helpful in establishing and maintaining vigorous pasture and hay plantings.

## PLANS AND SPECIFICATIONS

Prepare plans and specifications for each site or management unit according to the requirements of this standard. Record these specifications using the appropriate implementation requirement documents to provide the information to the land manager.

Address the following elements in the plan to meet the intended purpose:

- Field number and acres
- Species of plants to be established
- Activities needed to ready the planting area and the establishment procedure to be used
- Seeding rates and depth of seeds planted
- Seeding dates
- · Rates, timing, and forms of nutrient application and other soil amendments (if needed) from

NRCS, NHCP October 2020R approved soil test analysis results and recommendations

- Type of legume inoculant to be used (if applicable)
- Seed analysis (tag)
- All seed coating details (if applicable)
- Supplemental water for plant establishment (if applicable)
- Protection of plantings (if applicable), such as livestock exclusion periods and through use of NRCS CPSs Forage Harvest Management (Code 511) and Prescribed Grazing (Code 528), as needed.
- Description of successful establishment and when evaluation of establishment should be completed (e.g., minimum percent ground or canopy cover, percent stand, and stand density)

## **OPERATION AND MAINTENANCE**

The operation and maintenance plan will include, as a minimum, the following requirements:

- · Inspect and calibrate equipment prior to use
- Continually monitor equipment during planting to ensure proper rate, distribution, and depth of planting material is maintained
- Monitor new plantings for water stress
  - Depending on the severity of drought, water stress may require reducing weeds, early harvest of any companion crops, irrigating when possible, or replanting failed stands.
  - Monitor new plantings for prolonged wet conditions, which may cause failure of the plant establishment.

### REFERENCES

Ball, D.M., C.S. Hoveland, and G.D. Lacefield. 2015. Southern Forages, Fifth Editon. International Plant Nutrition Institute: Norcross, GA.

Barnes, R.F., C.J. Nelson, K.J. Moore, and M. Collins. 2007. Forages, The Science of Grassland Agriculture, Sixth Edition. Iowa State University Press: Ames, IA.

Collins, M., C.J. Nelson., K.J. Moore, and R.F. Barnes. 2017. Forages, Volume 1: An Introduction to Grassland Agriculture, Seventh Edition. Wiley-Blackwell: Hoboken, N.J. ISBN: 9781119300649

Cornell University. 2019. "Plants Poisonous to Livestock." Department of Animal Science. Accessed August 24, 2020. <u>http://poisonousplants.ansci.cornell.edu/</u>

Skinner, R.H. and C.J. Dell. 2016. Yield and Soil Carbon Sequestration in Grazed Pastures Sown with Two or Five Forage Species. Crop Science 56:2135-2044. Crop Science Society of America, Madison, WI.<u>https://doi.org/10.2135/cropsci2015.11.0711</u>

Smith, R. 2016. "The Value of Coated Seed." University of Kentucky College of Agriculture, Food and Environment. Accessed August 24, 2020. <u>https://grazer.ca.uky.edu/content/value-coated-seed</u>

USDA NRCS. 2008. National Range and Pasture Handbook (Title 190). Washington, D.C. <u>https://directives.sc.egov.usda.gov/</u>.

USDA NRCS. n.d. "PLANTS Database." Accessed August 24, 2020. https://plants.sc.egov.usda.gov/

USDA NRCS. 2009. Plant Materials Technical Note No. 3 (Title 190). Planting and Managing Switchgrass as a Biomass Energy Crop. Washington, D.C. <u>https://directives.sc.egov.usda.gov</u>.

USDA NRCS. 2016. National Organic Farming Handbook (Title 190). Washington, D.C. <u>https://directives.sc.egov.usda.gov/</u>

NRCS, NHCP October 2020R



# **Conservation Practice Overview**

# Prescribed Grazing (Code 528)

Prescribed grazing is the controlled harvest of vegetation with grazing animals, managed with the intent to achieve a specific objective.

# **Practice Information**

This practice may be applied on all lands where grazing and/or browsing animals are managed. Removal of herbage by the grazing animals is in accordance with production limitations, plant sensitivities and management



goals. Frequency of defoliations and season of grazing is based on the rate of growth and physiological condition of the plants. Duration and intensity of grazing is based on desired plant health and expected productivity of the forage species to meet management objectives. In all cases enough vegetation is left to prevent accelerated soil erosion.

Application of this practice will manipulate the intensity, frequency, duration, and season of grazing to:

- 1. Improve water infiltration
- 2. maintain or improve riparian and upland area vegetation
- 3. Protect stream banks from erosion
- 4. Manage for deposition of fecal material way from water bodies
- 5. Promote ecological and economically stable plant communities which meet landowner objectives

A prescribed grazing schedule will be prepared for all fields and pastures and recorded in a manner that is readily understood and useable by the decision maker. The grazing schedule should include the following information:

- 1. Expected forage quality and quantity for all lands providing forage.
- 2. Numbers and kinds of animals utilizing available forage on the unit.
- 3. Inventory of all sources of forage and supplemental feed including documentation of surpluses and deficiencies.
- 4. A planned grazing schedule for livestock showing periods of grazing, rest, and other activities for all fields and pastures included in the grazing plan.
- 5. A contingency plan that details potential climatic problems and a guide for adjusting to insure proper management of forage resources.

# **Common Associated Practices**

Additional information including practice specifications are available in the local NRCS Field Office Technical Guide.

# Natural Resources Conservation Service

# Helping People Help the Land USDA is an equal opportunity provider, employer, and lender.

**Natural Resources Conservation Service** 

# **CONSERVATION PRACTICE STANDARD**

# **PRESCRIBED GRAZING**

# Code 528

# (Ac)

# DEFINITION

Managing the harvest of vegetation with grazing and/or browsing animals with the intent to achieve specific ecological, economic, and management objectives.

# PURPOSE

Apply this practice as a part of a conservation management system to achieve one or more of the following:

- Improve or maintain desired species composition, structure and/or vigor of plant communities.
- Improve or maintain quantity and/or quality of forage for grazing and browsing animals' health and productivity.
- Improve or maintain surface and/or subsurface water quality and/or quantity.
- Improve or maintain riparian and/or watershed function.
- Reduce soil erosion, and maintain or improve soil health.
- Improve or maintain the quantity, quality, or connectivity of food and/or cover available for wildlife.
- Manage fine fuel loads to achieve desired conditions.

# CONDITIONS WHERE PRACTICE APPLIES

This practice applies to all lands where grazing and/or browsing animals are managed.

# CRITERIA

## General Criteria Applicable to All Purposes

Manage stocking rates and grazing periods to adjust the intensity, frequency, timing, duration, and distribution of grazing and/or browsing to meet the planned objectives for the plant communities, and the associated resources, including the grazing and/or browsing animals.

Remove forage in accordance with site production limitations, rate of plant growth, the physiological needs of forage plants, and the nutritional needs of the animals.

Provide desired grazed/browsed plants sufficient recovery time from grazing/browsing to meet planned objectives. The recovery period can be provided for part or all of the growing season of key plants. Deferment and/or rest will be planned for critical periods of plant or animal needs.

Manage livestock movements based on rate of plant growth, available forage, and identified objectives such as utilization, plant height or standing biomass, residual dry matter, and/or animal performance.

Manage grazing and/or browsing animals to maintain adequate vegetative cover on sensitive areas (i.e., riparian, wetland, habitats of concern, and karst areas).

Provide adequate quantity and quality of drinking water during period of occupancy.

Develop contingency plans to deal with expected episodic disturbance events (e.g., drought, wildfire, insect infestation, etc.).

Develop monitoring plans that directly support adaptive management decisions based upon identified ecologic triggers and thresholds to optimize the conservation outcome for the selected purposes.

Conform to all applicable Federal, State, Tribal and local laws. Seek measures to avoid adverse effects to endangered, threatened, and candidate species and their habitats.

# Additional Criteria to Improve or Maintain the Health and Vigor of Desired Plant Communities.

Base the intensity, frequency, timing, and duration of grazing and/or browsing on desired plant health, expected productivity, and composition of key species to meet management objectives.

Plan periodic deferment from grazing and/or browsing to maintain or restore the desired plant community following grazing/browsing and episodic events, such as wildfire or severe drought.

Where appropriate, test soil periodically for nutrient status and soil reaction, and apply fertilizer and/or soil amendments according to soil test results to improve or maintain plant vigor.

# Additional Criteria to Improve or Maintain Quantity and Quality of Forage for Animal Health and/or Productivity

Plan grazing and/or browsing to match forage quantity and/or quality goals of the producer within the capability of the resource to respond to management.

Enhance diversity of rangeland and pasture plants to optimize delivery of nutrients to the animals by planning intensity, frequency, timing, and duration of grazing and/or browsing.

Plan intensity, frequency, timing, and duration of grazing and/or browsing to reduce animal stress and mortality from toxic and/or poisonous plants.

Provide supplemental feed and/or minerals as needed to balance with forage consumption to meet the desired nutritional level for the kind and class of grazing and/or browsing livestock.

Base the dietary needs of livestock on the National Research Council's Nutrient Requirements of Domestic Animals or similar scientific sources with appropriate adjustments made for increased energy demand required by browsing or grazing animals foraging for food including travel to and from grazing/browsing area.

# Additional Criteria to Improve or Maintain Surface and/or Subsurface Water Quality and/or Quantity.

Minimize concentrated livestock areas to enhance nutrient distribution and improve or maintain ground cover.

Manage intensity, frequency, timing, and duration of grazing, browsing and/or feeding to-

- Minimize deposition or flow of animal wastes into water bodies.
- Minimize animal impacts on stream bank or shoreline stability.
- Maintain or improve hydrologic function including infiltration and/or filtering capacity and soil surface stability to reduce runoff by providing adequate ground cover, plant spacing, and plant density.

# Additional Criteria to Improve or Maintain Riparian and/or Watershed Function.

Minimize concentrated livestock areas to improve or maintain riparian/floodplain plant community structure and functions.

Plan intensity, frequency, timing and duration of grazing and/or browsing to-

- Provide adequate ground cover and plant density to maintain or improve infiltration capacity and reduce runoff.
- Provide optimum ground cover, plant density, and/or plant structure to maintain or improve filtering capacity of the vegetation.
- Maintain adequate riparian community structure and function to sustain associated riparian, wetland, floodplain, and stream species.

# Additional Criteria to Reduce Soil Erosion and Maintain or Improve Soil Health

Minimize concentrated livestock areas, trailing, and trampling to reduce soil compaction, excess runoff and erosion, and maintain soil organic matter.

Plan intensity, frequency, timing, and duration of grazing and/or browsing to provide adequate ground cover, litter, and canopy to maintain or improve infiltration.

# Additional Criteria to Improve or Maintain Food and/or Cover for Fish and/or Wildlife Species of Concern

Identify species of concern in the objectives of the prescribed grazing plan.

Plan intensity, frequency, timing, and duration of grazing and/or browsing to provide for the development and maintenance of the plant structure, density, and diversity needed for the habitat requirements of the desired fish and wildlife species of concern.

## Additional Criteria for Management of Fine Fuel Load

Plan intensity, frequency, timing, and duration of grazing and/or browsing to manage fuel continuity and loading to reduce wildfire hazard and/or facilitate desired conditions for prescribed burns.

# CONSIDERATIONS

Protect soil, water, air, plant, and animal resources when locating livestock feeding, supplementation, handling, and watering facilities.

Design and install livestock feeding, handling, and watering facilities in a manner to improve and/or maintain animal distribution. Design and install facilities to minimize stress, the spread of disease, parasites, contact with harmful organisms, and toxic plants.

Utilization, stubble height, and other target levels are tools that can be used in conjunction with monitoring to help ensure that resource conservation and producer objectives are met.

Where practical and beneficial, start the grazing sequence in a different management unit each growing season.

When weeds are a significant problem prescribed grazing and/or browsing should be implemented in conjunction with other pest management practices to promote plant community resistance to invasive species and protect desired plant communities.

Prescribed grazing should consider the needs of other enterprises utilizing the same land, such as wildlife and recreational uses.

Develop alternatives that minimize additional grazing management infrastructure while still achieving plan objectives for the desired fish and wildlife species of concern.

Provide deferment or rest from grazing or browsing as necessary to ensure the success of prescribed fire, brush management, seeding, or other conservation practices to prevent stress or damage to key plants

Use drought forecasting tools and soil water forecasts where available to promote the accuracy of forage production projections.

Improve carbon sequestration in biomass and soils through management of grazing and/or browsing to produce the desired results.

Plan biosecurity safeguards to prevent the spread of disease between on-farm or ranch classes of livestock and between livestock farm or ranch units.

Provide shelter in the form of windbreaks, sheds, shade structures, and other protective features where conditions warrant to protect livestock from severe weather, intense heat/humidity, and predators.

If nutrients are being applied, CPS Nutrient Management (Code 590) will be applied.

Maintain conservative stocking rates as a drought contingency strategy to minimize detrimental consequences during drought on economic and ecological sustainability.

# PLANS AND SPECIFICATIONS

Prepare a prescribed grazing plan for all planned conservation management units where grazing and/or browsing will occur according to State standards and specifications.

Prescribed grazing plan will include—

- Goals and objectives clearly stated.
- Resource inventory that identifies—
  - Existing resource conditions and concerns.
  - Ecological site or forage suitability group.
  - Opportunities to enhance resource conditions.
  - Location and condition of structural improvements such as fences, water developments, etc., including seasonal availability and quality of watering sites.
- Forage inventory of the expected forage quality, quantity, and species in each management unit(s).
- Forage-animal balance developed for the grazing plan that ensures forage produced or available meets forage demand of livestock and/or wildlife.
- Grazing plan developed for livestock that identifies periods of grazing and/or browsing, deferment, rest, and/or other treatment activities for each management unit that accommodates the flexibility needed for adaptive management decisions as supported by the contingency plan and monitoring plan in order to meet goals and objectives.
- Contingency plan developed that details potential problems (i.e., drought, flooding, and insects) and serves as a guide for adaptive management decisions in grazing prescription adjustments in order to mitigate resource and economic effects.
- Monitoring plan developed with appropriate protocols and records that assess whether the grazing strategy is resulting in a movement toward meeting goals and objectives. Short-term and long-term monitoring may be needed to determine outcomes and support timely adaptive management decisions. Identify the key areas, key plants, or other monitoring indicators that the manager should evaluate in making grazing management decisions.

# **OPERATION AND MAINTENANCE**

# **Operation**

Prescribed grazing will be applied on a continuing basis throughout the livestock occupation period of all planned grazing units.

Adaptive management decisions will be made as needed and documented within the plan to ensure that the goals and objectives of the prescribed grazing strategy are met.

# **Maintenance**

Monitoring data and grazing records will be used on a regular basis within the prescribed grazing plan to ensure that objectives are being met, or to make necessary changes in the prescribed grazing plan to meet objectives.

All facilitating and accelerating conservation practices (e.g., CPS Fence (Code 382), Pest Management (Code 595), Brush Management (Code 314), Forage and Biomass Planting (Code 512), etc.) that are needed to effect adequate grazing and/or browsing distribution as planned by this practice standard will be maintained in good working order and operated as intended.

# REFERENCES

Barnes, R.F., D.A. Miller, and C.J. Nelson. 1995. Forages, The Science of Grassland Agriculture, 5<sup>th</sup> Ed. Iowa State University Press, Ames, Iowa.

Bedunah, D.J. and R. E. Sosebee, Editors. 1995. Wildland Plants. Physiological Ecology and Developmental Morphology. Society for Range Management, Denver, Colorado.

Briske, D.D. editor. {2011}. Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps. U.S. Department of Agriculture, Natural Resources Conservation Service.

Follet, R.F., J.M. Kimble, and R. Lal. 2001 The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect. Lewis Publishers, Boca Raton, Florida.

Heitschmidt, R.K. and J.W. Stuth eds. 1991. Grazing Management an Ecological Perspective. Timber Press.

Herrick, Jeffrey E., et. al. 2005. Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems, Volumes I and II. USDA-ARS Jornada Experimental Range. Las Cruces, New Mexico.

Hodgson, J. and A.W. Illius. Editors. 1996. Ecology and Management of Grazing Systems. CABI, Wellingford, United Kingdom.

Holechek, J.L., R.D. Pieper, and C. H. Herbel. 2000. Range management principles and practices. 5<sup>th</sup> edition. Prentice Hall, New Jersey.

National Research Council, 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. National Academy Press. Washington, D.C.

National Research Council, Nutrient Requirement Series, Nutrient Requirements of Domestic Animals. National Academy Press. Washington, D.C.

Nelson, C. Jerry, editor. {2012}. Conservation Outcomes from Pastureland and Hayland Practices: Assessment, Recommendations and Knowledge Gaps. Allen Press, Lawrence, Kansas.

National Drought Mitigation Center, Vegetation Drought Response Index, http://vegdri.unl.edu/.

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center, <u>http://www.cpc.noaa.gov/index.php.</u> Oates, Lawrence G. and Jackson, Randall D. 2014 Livestock Management Strategy Affects Net Ecosystem Carbon Balance of Subhumid Pasture, Rangeland Ecology and Management 67:19–29. Roche, L.M, Cutts, B.B., Derner, J.D., Lubell, M.N., Tate, K.W., On-Ranch Grazing Strategies: Context for the Rotational Grazing Dilemma, Rangeland Ecology And Management 68 (2015) 248-256.

Sanderson, M.A., Skinner, R.H., Barker, D.J., Edwards, G.R., & al, e. (2004). Plant species diversity and management of temperate forage and grazing land ecosystems. *Crop Science*, 44(4), 1132-1144.

Smith, D., R.J. Bula, and R.P. Walgenbach. 1986. Forage Management 5<sup>th</sup> ed. Kendall/Hunt Publ. Co. Dubuque, Iowa.

Spaeth, K., M. Weltz, D.D. Briske, L.W. Jolley, L.J. Metz, and C. Rossi, (2013). Rangeland CEAP: An assessment of natural resources conservation service practices. Rangelands, 35(1), 2-10.

U.S. Department of Agriculture, Natural Resources Conservation Service. 2003. National Range and Pasture Handbook. Washington, D.C.

U.S. Drought Monitor, http://droughtmonitor.unl.edu/.

Vallentine, J.F. 2001. Grazing management. Academic Press, San Diego, California.

Vegetation Drought Response Index (http://vegdri.unl.edu/



# **Conservation Practice Overview**

# Nutrient Management (Code 590)

Manage rate, source, placement, and timing of plant nutrients and soil amendments while reducing environmental impacts.

# **Practice Information**

Nutrient management may be used on any area of land where plant nutrients and soil amendments are applied. Nutrient management may be used to improve crop productivity and improve soil organic matter while reducing



environmental impacts. Sources of nutrients include, but are not limited to, commercial fertilizers (including starter and in-furrow starter/pop-up fertilizer), animal manures, legume fixation credits, green manures, plant or crop residues, compost, organic by-products, municipal and industrial biosolids, wastewater, organic materials, estimated plant available soil nutrients, and irrigation water.

Nutrients are managed based on the 4Rs of nutrient stewardship—apply the right nutrient source at the right rate at the right time in the right place—to improve nutrient use efficiency by the crop and to reduce nutrient losses to surface water and groundwater and to the atmosphere.

Operation and maintenance provide that nutrient management plans must be reviewed and revised, as needed, with each soil test cycle; changes in manure management, volume or analysis, plants and crops; or plant and crop management. Records must be maintained for at least 5 years to document plan implementation.

All nutrient management activities must adhere to national, State and local water quality regulations.

# **Common Associated Practices**

NRCS Conservation Practice Standard Nutrient Management (Code 590) is commonly applied with CPSs such as Residue and Tillage Management, No Till (329), Residue and Tillage Management, Reduced Till (345), Conservation Crop Rotation (Code 328), Filter Strip (Code 393), Cover Crop (Code 340), Contour Farming (Code 330), and Contour Buffer Strips (Code 332).

For further information, contact your local NRCS field office.

Natural Resources Conservation Service

Helping People Help the Land USDA is an equal opportunity provider, employer, and lender. May 2019



**United States Department of Agriculture** 

# Natural Resources Conservation Service

# **CONSERVATION PRACTICE STANDARD**

# NUTRIENT MANAGEMENT

# **CODE 590**

(ac)

# DEFINITION

Manage rate, source, placement, and timing of plant nutrients and soil amendments while reducing environmental impacts.

# PURPOSE

This practice is used to accomplish one or more of the following purposes:

- Improve plant health and productivity.
- Reduce excess nutrients in surface and ground water.
- Reduce emissions of objectionable odors.
- Reduce emissions of particulate matter (PM) and PM precursors.
- Reduce emissions of greenhouse gases (GHG).
- Reduce emissions of ozone precursors.
- Reduce the risk of potential pathogens from manure, biosolids, or compost application from reaching surface and ground water.
- Improve or maintain soil organic matter.

# CONDITIONS WHERE PRACTICE APPLIES

All fields where plant nutrients and soil amendments are applied. Does not apply to one-time nutrient applications at establishment of permanent vegetation.

# CRITERIA

## **General Criteria Applicable to All Purposes**

Develop a nutrient management plan for nitrogen (N), phosphorus (P), and potassium (K), which accounts for all known measurable sources and removal of these nutrients.

Sources of nutrients include, but are not limited to, commercial fertilizers (including starter and in-furrow starter/pop-up fertilizer), animal manures, legume fixation credits, green manures, plant or crop residues, compost, organic by-products, municipal and industrial biosolids, wastewater, organic materials, estimated plant available soil nutrients, and irrigation water.

When irrigating, apply irrigation water in a manner that reduces the risk of nutrient loss to surface and ground water.

Follow all applicable State requirements and regulations when applying nutrients near areas prone to contamination, such as designated water quality sensitive areas, (e.g., lakes, ponds, rivers and streams,

| visit the Field Office Technical Guide online by going to the NRCS website at                                                 |
|-------------------------------------------------------------------------------------------------------------------------------|
| https://www.nrcs.usda.gov/ and type FOTG in the search field.<br>USDA is an equal opportunity provider, employer, and lender. |

sinkholes, wellheads, classic gullies, ditches, or surface inlets) that run unmitigated to surface or groundwater.

### Soil and tissue testing and analysis

Base the nutrient management plan on current soil test results in accordance with land grant university (LGU) guidance, or industry practice when recognized by the LGU. Use soil tests no older than 2 years when developing new nutrient management plans. Use tissue testing, when applicable, for monitoring or adjusting the nutrient management plan in accordance with LGU guidance, or industry practice when recognized by the LGU.

For nutrient management plan revisions and maintenance, take soil tests on an interval recommended by the LGU or as required by local rules and regulations.

Collect, prepare, store, and ship all soil and tissue samples following LGU guidance or industry practice. The test analyses must include pertinent information for monitoring or amending the annual nutrient plan. Follow LGU guidelines regarding required analyses and test interpretations.

For soil test analyses, use laboratories successfully meeting the requirements and performance standards of the North American Proficiency Testing Program under the auspices of the Soil Science Society of America and NRCS or use an alternative NRCS- or State-approved certification program that considers laboratory performance and proficiency to assure accuracy of soil test results. Alternative certification programs must have solid stakeholder support (e.g., State department of agriculture, LGU, water quality control entity, NRCS State staff, growers, and others) and be State or regional in scope.

Maintain soil pH within ranges which enhance the adequate level for plant or crop nutrient availability and utilization. Refer to State LGU documentation for guidance.

#### Manure, organic by-product, and biosolids testing and analysis

Collect, prepare, store, and ship all manure, organic by-products, and biosolids following LGU guidance or industry practice when recognized by the LGU. In the absence of such guidance, test at least annually, or more frequently if needed to account for operational changes (e.g., feed management, animal type, manure handling strategy, etc.) impacting manure nutrient concentrations. If no operational changes occur and operations can document a stable level of nutrient concentrations for the preceding 3 consecutive years, manure may be tested less frequently, unless Federal, State, or local regulations require more frequent testing. Follow LGU guidelines regarding required analyses and test interpretations. Analyze, as a minimum, total N, total P or  $P_2O_5$ , total K or K<sub>2</sub>O, and percent solids.

When planning for new or modified livestock operations, and manure tests are not available yet, use the output and analyses from similar operations in the geographical area if they accurately estimate nutrient output from the proposed operation or use "book values" recognized by the NRCS (e.g., NRCS Agricultural Waste Management Field Handbook) and the LGU.

For manure analyses, use laboratories successfully meeting the requirements and performance standards of the Manure Testing Laboratory Certification program under the auspices of the Minnesota Department of Agriculture or other NRCS-approved program that considers laboratory performance and proficiency to assure accurate manure test results.

For nutrient management plans developed as a component of a comprehensive nutrient management plan for an animal feeding operation (AFO) follow policy in NRCS directive General Manual (GM) 190, Part 405, "Comprehensive Nutrient Management Plans." These plans must include documentation of all nutrient imports, exports, and on-farm transfers.

#### Nutrient loss risk assessments

Use current NRCS-approved nitrogen, phosphorus, and soil erosion risk assessment tools to assess the site-specific risk of nutrient and soil loss.

Complete an NRCS-approved nutrient risk assessment for N on all fields where nutrient management is planned unless the State NRCS, in cooperation with State water quality control authorities, has determined specific conditions where N leaching is not a risk to water quality, including drinking water.

Complete an NRCS-approved nutrient risk assessment for P when any of the following conditions are met—

- P application rate exceeds LGU fertility rate guidelines for the planned crop(s).
- The planned area is within a P-impaired watershed.
- The site-specific conditions equating to low risk of P loss have not been determined by the NRCS in cooperation with the State water quality control authority.

Any fields excluded from a P risk assessment must have a documented agronomic need for P, based on soil test P and LGU nutrient recommendations.

For fields receiving manure, where P risk assessment results equate to-

- LOW risk.—Manure can be applied at rates to supply P at greater than crop requirement not to exceed the N requirement for the succeeding crop.
- MODERATE risk.—Manure can be applied at rates not to exceed crop P removal rate or the soil test P recommended rate for the planned crops in rotation.
- HIGH risk.—Manure can be applied at rates not to exceed crop P removal rate if the following requirements are met:
  - A soil P drawdown strategy has been developed, documented, and implemented for the crop rotation.
  - Implementation of all mitigation practices determined to be needed by site-specific assessments for nutrients and soil loss to protect water quality.
  - Any deviation from these high-risk requirements that would increase the risk of P runoff requires the approval of the Chief of the NRCS.

## The 4Rs of nutrient stewardship

Manage nutrients based on the 4Rs of nutrient stewardship—apply the right nutrient source at the right rate at the right time in the right place—to improve nutrient use efficiency by the crop and to reduce nutrient losses to surface and groundwater and to the atmosphere.

## Nutrient source

Choose nutrient sources compatible with application timing, tillage and planting system, soil properties, crop, crop rotation, soil organic content, and local climate to minimize risk to the environment.

Determine nutrient values of all nutrient sources (e.g. commercial fertilizers, manure, organic by-products, biosolids) prior to land application.

Determine nutrient contribution of cover crops, previous crop residues, and soil organic matter.

For operations following USDA's National Organic Program, apply and manage nutrient sources according to program regulations.

For enhanced efficiency fertilizer (EEF) products, use products defined by the Association of American Plant Food Control Officials as EEF and recommended for use by the State LGU.

In areas where salinity is a concern, select nutrient sources that limit the buildup of soil salts. When manures are applied, and soil salinity is a concern, monitor salt concentrations to prevent potential plant or crop damage and reduced soil quality.

Apply manure or organic by-products on legumes at rates no greater than the LGU estimated N removal rates in harvested plant biomass, not to exceed P risk assessment limitations.

For any single application of nutrients applied as liquid (e.g., liquid manure, nutrients in irrigation water, fertigation)—

- Do not exceed the soil's infiltration rate or water holding capacity.
- Apply so that nutrients move no deeper than the current crop rooting depth.
- Avoid runoff or loss to subsurface tile drains.

### Nutrient rate

Plan nutrient application rates for N, P, and K using LGU recommendations or industry practices when recognized by the LGU. Lower-than-recommended nutrient application rates are permissible if the client's objectives are met.

At a minimum, determine the rate based on crop/cropping sequence, current soil test results, and NRCSapproved nutrient risk assessments. Where applicable, use realistic yield goals.

For new crops or varieties where LGU guidance is unavailable, industry-demonstrated yield and nutrient uptake information may be used.

Estimate realistic yield potentials or realistic yield goals using LGU procedures or based on historical yield or growth data, soil productivity information, climatic conditions, nutrient test results, level of management, and/or local research results considering comparable management and production conditions.

### Nutrient application timing and placement

Consider the nutrient source, management and production system limitations, soil properties, weather conditions, drainage system, soil biology, and nutrient risk assessment to develop optimal timing of nutrients. For N, time the application as closely as practical with plant and crop uptake. For P, time planned surface application when runoff potential is low. Time the application of all nutrients to minimize potential for soil compaction.

For crop rotations or multiple crops grown in one year, do not apply additional P if it was already added in an amount sufficient to supply all crop nutrient needs.

To avoid salt damage, follow LGU recommendations for the timing, placement, and rate of applied N and K in starter fertilizer or follow industry practice recognized by the LGU.

Do not surface apply nutrients when there is a risk of runoff, including when-

- Soils are frozen.
- Soils are snow-covered.
- The top 2 inches of soil are saturated.

Exceptions for the above criteria related to surface-applied nutrients when there is a risk of runoff can be made when specified conditions are met and adequate conservation measures are installed to prevent the offsite delivery of nutrients. NRCS, in cooperation with the State water quality control authority, will define adequate treatment levels and specified conditions for applications of manure if soils are frozen and/or snow covered or the top 2 inches of soil are saturated. At a minimum, must consider the following site and management factors:

- Climate (long-term)
- Weather (short-term)
- Soil characteristics
- Slope

- Areas of concentrated flow
- Organic residue and living covers
- · Amount and source of nutrients to be applied
- Setback distances to protect local water quality

## Additional Criteria to Minimize Agricultural Nonpoint Source Pollution of Surface and Groundwater

Apply conservation practices to avoid nutrient loss and control and trap nutrients before they can leave the field(s) by surface, leaching, or subsurface drainage (e.g., tile, karst) when there is a significant risk of transport of nutrients.

# Additional Criteria to Reduce the Risk of Potential Pathogens From Manure, Biosolids, or Compost Application From Reaching Surface and Groundwater

When applicable, follow proper biosecurity measures as provided in NRCS directives GM-130, Part 403, Subpart H, "Biosecurity Preparedness and Response."

Follow all applicable Federal, Tribal, State, and local laws and policies concerning the application of manure, biosolids, or compost in the production of fresh, edible crops.

Apply manure, biosolids, or compost with minimal soil disturbance or by injection into the soil unless it is being applied to an actively growing crop, a minimum of 30 percent residue exists, or there is a living cover that has a fibrous root system with 75 percent or more cover. Do not surface apply manure if a storm event is forecast within 24 hours.

# Additional Criteria to Reduce Emissions of Objectionable Odors, PM and PM Precursors, and GHG and Ozone Precursors

To address air quality concerns caused by odor, N, sulfur, and particulate emissions; adjust the source, timing, amount, and placement of nutrients to reduce the negative impact of these emissions on the environment and human health.

Do not surface apply solid nutrient sources, including commercial fertilizers, manure, or organic byproducts of similar dryness/density when there is a high probability that wind will blow the material and emissions offsite. Do not surface apply liquid nutrient sources when there is a high probability that wind will blow the liquid droplets applied from sprinklers or other applicable methods offsite.

Reduce the potential for volatilization by applying sources subject to volatilization during cooler, higher humidity conditions or by placement that minimizes vulnerability to volatilization.

## Additional Criteria to Improve or Maintain Organic Matter

Design the plant or crop management systems so the soil conditioning index (SCI) organic matter subfactor is positive.

Apply manure, compost, or other organic nutrient sources at a rate and with minimal disturbance that will improve soil organic matter without exceeding acceptable risk of N or P loss.

For low residue plant or cropping systems, apply adequate nutrients to optimize plant or crop residue production to maintain or increase soil organic matter.

# CONSIDERATIONS

## **General Considerations**

Consider development of nutrient management plans by conservation management unit (CMU). A CMU is a field, group of fields, or other land units of the same land use and having similar treatment needs and planned management. A CMU is a grouping by the planner to simplify planning activities and facilitate development of conservation management systems. A CMU has definitive boundaries such as fencing, drainage, vegetation, topography, or soil lines.

Develop site-specific yield maps using a yield monitoring system, multispectral imagery or other methods. Use the data to further delineate low- and high-yield areas, or zones, and make the necessary management changes. Use variable rate nutrient application based on site-specific factor variability. See NRCS directive Agronomy Technical Note (TN) 190, AGR.3, "Precision Nutrient Management Planning."

Use the adaptive nutrient management learning process to improve nutrient use efficiency on farms as outlined in NRCS' national nutrient policy in GM-190, Part 402, "Nutrient Management." Consider using an adaptive approach to adjust nutrient rate, timing, form, and placement as soil biologic functions and soil organic matter changes over time. See NRCS directive Agronomy Technical Note (TN) 190, AGR.7, "Adaptive Nutrient Management Process."

When developing new nutrient management plans, consider using soil test information no older than 1 year rather than 2 years.

Develop a whole farm nutrient budget (nutrient mass balance), including all imported and exported nutrients. Imports may include feed, fertilizer, animals and bedding, while exports may include crop removal, animal products, animal sales, manure, and compost.

Modify animal feed diets to reduce the nutrient content of manure following guidance contained in Conservation Practice Standard (CPS) Feed Management (Code 592).

Provide a nutrient analysis of all nutrient source exports (manure or other materials).

Excessive levels of some nutrients can cause induced deficiencies of other nutrients, (e.g., high soil test P levels can result in zinc deficiency in corn).

Use soil tests, plant tissue analyses, and field observations to check for secondary plant nutrient deficiencies or toxicity that may impact plant growth or availability of the primary nutrients.

Do not apply K in situations where an excess (greater than soil test K recommendation) causes nutrient imbalances in crops or forages.

Use bioreactors and multistage drainage strategies to mitigate nutrient loss pathways, as applicable.

Use legume crops and cover crops to provide N through biological fixation. Cover crops with a carbon to nitrogen ratio below 20:1 can release a large amount of soluble N after being plowed or tilled into the soil when an actively growing crop is not present to take up nutrients, leading to increased risks of nitrate movement and nitrous oxide emissions. The nitrous oxide emissions often occur in high soil moisture conditions, such as when a legume cover crop is plowed down in fall or early spring. To avoid these losses, use grass-legume or grass-legume-forbs mixtures with a more balanced carbon to nitrogen ratio.

Use winter hardy grass cover crops to take up excess N after the cash crop growing season and promote contribution of the nitrogen to next plant or crop.

Use conservation practices that slow runoff, reduce erosion, and increase infiltration (e.g., filter strip, contour farming, or contour buffer strips).

Use application methods, timing, technologies or strategies to reduce the risk of nutrient movement or loss, such as—

- Split nutrient applications.
- Banded applications.
- Injection of nutrients below the soil surface.
- Incorporate surface-applied nutrient sources when precipitation capable of producing runoff or erosion is forecast within the time of a planned application.
- High-efficiency irrigation systems and technology.

- Enhanced efficiency fertilizers
  - Slow or controlled release fertilizers
  - Nitrification inhibitors
  - Urease inhibitors.
- Drainage water management.
- Tissue testing, chlorophyll meters, or real-time sensors.
- Pathogen management considerations.

When a recycled product (e.g., compost) is to be used as a nutrient source on food crops or as food for humans or animals, make sure that pathogen levels have been reduced to acceptable levels (reference the Food and Drug Administration's Food Safety Modernization Act at <u>www.fda.gov/FSMA</u>). When the recycled product has come from another farming operation, implement biosecurity measures and evaluate the risk of pathogen transfer that could cause plant or animal diseases.

Use manure treatment systems that reduce pathogen content from manure.

Implementing a soil health management system that reduces tillage or other soil disturbance, includes a diverse rotation of crops and cover crops, keeps roots growing throughout the year, and keeps the soils covered to reduce nutrient losses, and improves—

- Nutrient use efficiency, rooting depth, and availability of nutrients.
- Soil organic matter levels.
- Availability of nutrients from organic sources.
- Aggregate stability and soil structure.
- Infiltration, drainage, and aeration of the soil profile.
- Soil biological activity.
- Water use efficiency and available moisture.

Use targeted or prescribed livestock grazing to enhance nutrient cycling and improve soil nutrient cycling functions.

Elevated soil test P levels may lead to reduced mycorrhizal fungal associations and immobilize some micronutrients, such as iron, zinc, and copper.

Apply manure, compost, or other nutrient sources with minimal soil disturbance and at a rate that will improve soil organic matter without exceeding acceptable risk of N or P loss.

# PLANS AND SPECIFICATIONS

In the nutrient management plan, document-

- Aerial site photograph(s), imagery, topography, or site map(s).
- Soil survey map of the site.
- Soil information including: soil type, surface texture, drainage class, permeability, available water capacity, depth to water table, restrictive features, and flooding and ponding frequency.
- Location of designated sensitive areas and the associated nutrient application restrictions and setbacks.
- Location of nearby residences, or other locations where humans may be present on a regular basis, that may be impacted if odors or PM are transported to those locations.
- Results of approved risk assessment tools for N, P, and erosion losses.
- Documentation establishing the application site presents a low risk for P transport to local water if P is applied in excess of crop requirement.

- Current and planned plant production sequence or crop rotation.
- All available test results (e.g. soil, water, compost, manure, organic by-product, and plant tissue sample analyses) upon which the nutrient budget and management plan are based.
- When soil P levels are increasing above an agronomic level, include a discussion of the risk associated with P accumulation and a proposed P draw-down strategy.
- Realistic yield goals for the crops (where applicable for developing the nutrient management plan).
- Nutrient recommendations for N, P, and K for the entire plant production sequence or crop rotation.
- Listing, quantification, application method and timing for all nutrient sources (including all enhanced efficiency fertilizer products) that are planned for use and documentation of all nutrient imports, exports, and onsite transfers.
- Guidance for implementation, operation and maintenance, and recordkeeping.

For variable rate nutrient management plans, also include-

- Geo-referenced field boundary and data collected that was processed and analyzed as a GIS layer or layers to generate nutrient or soil amendment recommendations per management zone. Must include site-specific yield maps using soils data, current soil test results, and a yield monitoring system with GPS receiver to correlate field location with yield.
- Nutrient recommendation guidance and recommendation equations used to convert the GIS base data layer or layers to a nutrient source material recommendation GIS layer or layers.
- After implementation, provide application records per management zone or as applied map within individual field boundaries (or electronic records) documenting source, timing, method, and rate of all nutrient or soil amendment applications.

If increases in soil P levels are expected above an agronomic level (i.e., when N-based rates are used), document—

- Soil P levels at which it is desirable to convert to P-based planning.
- A long-term strategy and proposed implementation timeline for soil test P drawdown from the production and harvesting of crops.
- Management activities or techniques used to reduce the potential for P transport and loss.
- For AFOs, a quantification of manure produced in excess of crop nutrient requirements.

## **OPERATION AND MAINTENANCE**

Review or revise plans periodically to determine if adjustments or modifications are needed. At a minimum, review and revise plans as needed with each soil test cycle, changes in manure management, volume or analysis, plants and crops, or plant and crop management.

Monitor fields receiving animal manures and biosolids for the accumulation of heavy metals and P in accordance with LGU guidance and State law.

For animal feeding operation, significant changes in animal numbers, management, and feed management will necessitate additional manure analyses to establish a revised average nutrient content.

Calibrate application equipment to ensure accurate distribution of material at planned rates. For products too dangerous to calibrate, follow LGU or equipment manufacturer guidance on proper equipment design, plumbing, and maintenance.

Document the nutrient application rate. When the applied rate differs from the planned rate, provide appropriate documentation to explain the difference.

Protect workers from and avoid unnecessary contact with nutrient sources. Take extra caution when handling anhydrous ammonia or when managing organic wastes stored in unventilated tanks, impoundments, or other enclosures.

Use material generated from cleaning nutrient application equipment in an environmentally safe manner. Collect, store, or field apply excess material in an appropriate manner.

Recycle or dispose of nutrient containers in compliance with State and local guidelines or regulations.

Maintain records for at least 5 years to document plan implementation and maintenance. Records must include—

- All test results (soil, water, compost, manure, organic by-product, and plant tissue sample analyses) upon which the nutrient management plan is based.
- Listing and quantification of all nutrient sources (including all enhanced efficiency fertilizer products) that are planned for use and documentation of all nutrient imports, exports and onsite transfers.
- Date(s), method(s), and location(s) of all nutrient applications.
- Weather conditions and soil moisture at the time of application, elapsed time from manure application to rainfall or irrigation event(s).
- Plants and crops planted, planting and harvest dates, yields, nutrient analyses of harvested biomass, and plant or crop residues removed.
- Dates of plan review, name of reviewer, and recommended adjustments resulting from the review.

For variable rate nutrient management plans, also include—

- Maps identifying the variable application location, source, timing, amount, and placement of all plant and crop nutrients applied.
- GPS-based yield maps for crops where yields can be digitally collected.

## REFERENCES

Association of American Plant Food Control Officials (AAPFCO). 2017. AAPFCO Official Publication no. 70. AAPFCO Inc., Little Rock, AR.

Follett, R.F. 2001. Nitrogen transformation and transport processes. In Nitrogen in the environment; sources, problems, and solutions, (eds.) R.F. Follett and J. Hatfield, pp. 17–44. Elsevier Science Publishers. The Netherlands. 520 pp.

Schepers, J.S., and W.R. Ruan, (eds.) 2008. Nitrogen in agricultural systems. Agron. Monogr. no. 49, American Society of Agronomy (ASA), Crop Science Society of America (CSSA), Soil Science Society of America (SSSA). Madison, WI.

Sims, J.T. (ed.) 2005. Phosphorus: Agriculture and the environment. Agron. Monogr. no. 46. ASA, CSSA, and SSSA, Madison, WI.

Stevenson, F.J. (ed.) 1982. Nitrogen in agricultural soils. Agron. Series 22. ASA, CSSA, and SSSA, Madison, WI.

USDA, NRCS. Agronomy Technical Note 3, Precision Nutrient Management Planning. 2010. Washington, DC. NRCS eDirectives under Technical Notes, Title 190 (<u>https://policy.nrcs.usda.gov/</u>).

USDA, NRCS. Agronomy Technical Note 7, Adaptive Nutrient Management Process. 2013. Washington, DC. NRCS eDirectives under Technical Notes, Title 190 (<u>https://policy.nrcs.usda.gov/</u>).

USDA, NRCS. Nutrient Management Technical Note 7, Reducing Risk of E. coli O157:H7. 2007. Washington, DC. NRCS eDirectives under Technical Notes, Title 190 (<u>https://policy.nrcs.usda.gov/</u>).

USDA, NRCS. Title 190, General Manual, (GM), Part 402, Nutrient Management. 2011. Washington, DC. NRCS eDirectives under General Manual, Title 190 (<u>https://policy.nrcs.usda.gov/</u>).

USDA, NRCS. Title 190, National Instruction (NI), Part 313, Nutrient Management Policy Implementation. 2017. Washington, DC. NRCS eDirectives under National Instruction, Title 190 (<u>https://policy.nrcs.usda.gov/</u>).